
Abstract. On analyzing the topological structures of
the three types of tetrahedral fullerenes (which consist
only of triangles and hexagons), (1) Cn�Td ; n � 12h2;
h � 1; 2; . . .�; (2) Cn�Td ; n � 4h2; h � 1; 2; . . .�; and (3)
Cn�T ; n � 4�h2 � hk � k2�; h > k; h; k � 1; 2; . . .�; we
have obtained theoretically the Infrared and Raman
active modes by means of the derived formulas for the
decomposition of their nuclear motions into irreducible
representations, and the 13C NMR spectra with natural
abundance for 13C by using the distribution functions
for all of the tetrahedral (Td and T ) fullerenes, respec-
tively.
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1 Introduction

Since the discovery of C60 in 1985 [1], numerous
fullerenes have been observed by mass spectrometry
with laser vaporizing on graphite. Many theoretical
analyses have been done on their structures [2, 3] and
their vibration [4±8] and NMR [4, 9, 10] spectra. It
is well known that C60 with icosahedral symmetry is
the structure of a soccer football constituted only by
hexagons and pentagons. C80, C180, C240, C320, C540, etc.,
which are believed to be polyhedrons with hexagonal
and pentagonal faces, are considered as fullerenes with
icosahedral symmetry. It should be mentioned that
Fowler suggested a geometry with tetrahedral group
symmetry for C28 [11], which is a polyhedron with 12
pentagons and four hexagons. On the other hand, C24 is
believed to be a polyhedron with six rectangles and eight
hexagons and is considered to be the smallest fullerene
with octahedral symmetry (Oh). It is interesting to study

theoretically those fullerenes with hexagonal faces and
non-pentagonal faces. We have also discussed a series
of icosahedral (Ih and I), octahedral (Oh and O), and
tetrahedral (Td and T ) fullerenes with two kinds of face,
one hexagonal and the other pentagonal, rectangular, or
triangular, respectively [12].

In fact, by using the Euler equation for a convex
polyhedron

n� f � l� 2 �1�
where n is the number of vertices, f the number of faces,
and l the number of edges of the polyhedron, and by
considering that each vertex is connected with three
edges for a fullerene polyhedron, or

3n � 2l �2�
one has for any fullerene polyhedron

l � 3f ÿ 6 �3�
Now we consider a fullerene polyhedron with two kinds
of face, a six-side face and a j-side face, of which the
numbers are denoted by f6 and fj.
Then

f6 � fj � f �4�
6f6 � jfj � 2l �5�
and considering Eqs. (3), (4), and (5) we obtain [12]

fj � 12=�6ÿ j� �6�
Therefore, the j values of the above equation can only be
equal to 5, 4, or 3. The highest symmetry group of a
polyhedron to which fullerenes with two kinds of face,
a six-side face and a j-side face, belong is Ih, Oh, and
Td corresponding to j=5, 4, and 3, respectively.

In present article we have only made a systematic
study of the topological geometry structure for the tet-
rahedral (Td and T ) polyhedron fullerenes which contain
only hexagonal and triangular faces and of their vibra-
tion spectra and NMR spectra as characteristics to
detect and test their existence.
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2 Topological structure of tetrahedral fullerenes

Firstly we determine the carbon counts of tetrahedral
fullerenes. If the number of vertices of a polyhedron is
equal to the number of faces of another polyhedron, and
vice versa, then they are called conjugate polyhedrons.
Obviously, a tetrahedron is a self-conjugate polyhedron
with the group Td symmetry:

C4�n � f � 4�
We use the Coxeter method [13] to deduce the carbon

counts of tetrahedral fullerenes. Choosing a graphite
coordinate system O¢HK as shown in Fig. 1, we take a
vector O¢P with terminal coordinates at (h; k), where h
and k are non-negative integers with the restriction
h � k; h > 0, and k � 0.

Any tetrahedral fullerene corresponds to four equiv-
alent triangles with each edge equal to the length
of O¢P; then we can deduce the carbon counts as
Cn : n � 4�h2 � hk � k2�. When O¢P is along the bisector
of HO¢K, or along the O¢H axis, the tetrahedral fullerene
has symmetry planes; then we have

Cn�Td ; n � 12h2; h � 1; 2; . . .�
Cn�Td ; n � 4h2; h � 1; 2; . . .�
Cn�T ; n � 4�h2 � hk � k2�; h > k; k � 1; 2; . . .� �7�

Let us consider a fullerene Cn with point group G as
its symmetry, and G is denoted as

G � fê � ĝ1; ĝ2; . . . ; ĝqg
With respect to group G the n carbon atoms in Cn are
divided into l sets, each of which contains q carbon
atoms. Starting with the carbon atoms 1; 2; . . . ; l, we can
obtain the l sets by the operations of G on them in turn
as follows:

ĝ1x; ĝ2x; . . . ; ĝqx
ÿ �

;x � 1; 2; . . . ; l

The aggregates of C atoms in Cn are divided into sets
called patches which are expressed as follows:

ĝt; 1; ĝt2; . . . ; ĝtl� �; t � 1; 2; . . . ; q

If we choose the ®rst patch �1; 2; . . . ; l� as the repre-
sentative patch, all the other patches can be obtained by
the successive applications of group operation
ĝt�t � 2; 3; . . . ; q� on it. As all the q patches are equiva-
lent, we only need to consider the representative patch
and its surrounding atoms instead of the whole Cn in
discussing many properties of the fullerenes.

In order to simplify the following discussion, we only
use the T symmetry group to treat the structures of
tetrahedral (Td and T ) fullerenes with hexagonal and
triangular faces. Therefore, on the circumsphere of any
tetrahedral fullerene, we may take one of the 12 equiv-
alent patches as the representative patch, from which all
the other patches can be obtained by operations of the
tetrahedral group T .

Since the tetrahedral fullerenes consist of three types
as Eq. (7), the corresponding patches and the distribu-
tion functions are also di�erent. This is discussed below.

2.1 Cn�Td ; n � 12h2; h � 1; 2; . . .�

The representative patch is characterized by the presence
of three threefold axes (OP3;OP03; and OP003) and one
twofold axis �OP2� at the boundaries, and a symmetry
plane rd determined by OP3 and OP2 passing through
the medium of the patch as shown in Fig. 2. Inside the
patch there are h2 carbon atoms which are symmetrically
distributed from upward to downward about the
symmetry plane rd in the manner of the following
distribution function:

D h2
ÿ � � �0; 1� � �1; 2� � � � � � �hÿ 1; h� �8�

as illustrated in Fig. 2. When all the elements of the
tetrahedral group T operate on the polyhedron
Cn�Td ; n � 12h2� separately, the representative patch will
move over all 12 equivalent patches, and they cover the
whole surface of the polyhedron Cn�Td ; n � 12h2�.

2.2 Cn�Td ; n � 4h2; h � 1; 2; . . .�

The representative patch of Cn�Td ; n � 4h2� is charac-
terized by the presence of three threefold axes
�OP03;OP3; and OP0003 � and one twofold axis �OP2� on
its boundaries. Furthermore, there is a symmetry plane
r0d determined by OP03 and OP2 across the patch, as
shown in Fig. 3.

Inside the patch, there are h2=3 carbon atoms which
are symmetrically distributed about the plane r0d . For
those carbon atoms on both the boundaries determined
by OP03 and OP3, and the other one by OP03 and OP0003 , we
can only take the carbon atoms on one boundary to be
in the patch. The distribution of carbon atoms about the
symmetry plane r0d is according to the following three
distribution functions in three cases, so we need to
consider the three cases separately.

D h2=3
ÿ � � �1; 2� � �4; 5� � � � � � �3mÿ 2; 3mÿ 1�
�h � 3m;m � 1; 2; . . .� �9�Fig. 1. The graphite coordinate system
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Fig. 2a±c. Patches of fullerenes Cn�Td ; n � 12h2�: a C12�h � 1�; b
C48�h � 2�; c C108�h � 3�

Fig. 3a±c. Patches of fullerenes Cn�Td ; n � 4h2�: a C36�h � 3m;
m � 1�; b C64�h � 3m� 1; m � 1�; c C100�h � 3m� 2; m � 1�

74



D h2=3
ÿ � � 1

3� �2; 3� � � � � � �3mÿ 1; 3m�
�h � 3m� 1;m � 0; 1; . . .� �10�

D�h2=3� � 1
3� 1� �3; 4� � � � � �3m; 3m� 1�

�h � 3m� 2;m � 0; 1; . . .� �11�
where 1

3 means the presence of one carbon atom lying on
the threefold axis OP 03.

2.3 Cn�T ; n � 4�h2 � hk � k2�; h > k; h; k � 1; 2; . . .�

As the T group has no symmetry planes, the fullerenes
Cn with T group symmetry can be divided into three
cases:

1: hÿ k � 3m; n � 12 k2 � 3km� 3m2
ÿ � �12�

2: hÿ k � 3m� 1; n � 12 k2 � 3km
ÿ
� 3m2 � 2m� k

�� 4 �13�
3: hÿ k � 3m� 2; n � 12 k2 � 3km� 3m2

ÿ
� 4m� 2k � 1� � 4 �14�

Obviously, there are four carbon atoms on the threefold
axes in the latter two cases, which are di�erent from the
®rst case.

3 Vibration spectra of tetrahedral fullerenes

Once the point group of a fullerene is known, its
vibrations can be analyzed and the Infrared (IR)-active,
Raman-active, polarized Raman, and IR/Raman coin-
cident modes can be counted, fully characterizing the
spectrum. A fullerene Cn has 3nÿ 6 vibrations and
their symmetries can be obtained by subtracting the
translational and rotational symmetries from the rep-
resentation of the 3n Cartesian atomic displacement
coordinates.

A mode can in general be IR active, Raman active, or
neither, or both. A fundamental transition is IR active if
the normal mode involved belongs to the same repre-
sentation of the point group as one or more components
of the dipole moment, and is Raman active if the mode
shares a representation with one or more components of
the polarizability tensor.

Now let us discuss the decomposition of fullerene
nuclear motions into irreducible representations. The n
vectors of the small nuclear displacements of Cn can be
used as the bases of a representation of a corresponding
point group, and their characters are equal to
n�ĝ�v�ĝ� �ĝ are the elements of the point group), where
n�ĝ� and v�ĝ� are the number of unmoved carbon atoms
and the trace of the vector displacement matrix with
respect to the operation ĝ, respectively. Then, by use of
characters of the point group and the orthogonality re-
lationship, we obtain the decomposition of nuclear
motions into any non-equivalent irreducible represen-
tations of the point group as follows:

na � 1

q

X
R̂

n ĝ� �v ĝ� �v�a��ĝ� �15�

where q is the order of the point group and na is the
number of irreducible representation a involved in the
nuclear motions.

3.1 Vibration spectra of
Cn�Td ; n � 12h2; h � 1; 2; . . .�

In the Td group the 24 group elements are divided into
®ve classes: ê; 8�Ĉ3, Ĉÿ13 �, 3Ĉ2, 6Ŝ4, 6r̂d . The Td group
has ®ve non-equivalent irreducible representations de-
noted by A1; A2; E; T1, and T2. Their characters are
listed in Table 1.

From the patch shown in Fig. 2 and distribution
function (8), we could know that only 12h carbon atoms
in Cn�Td ; n � 12h2� are lying on the symmetry planes rd .
All the remaining 12h�hÿ 1� carbon atoms are not lying
on any symmetry element. Therefore we have:

na � 3
2 h2v�a��ê� � 1

2 hv�a��r̂d� �16�
where a � A1; A2; E; T1, and T2, respectively.

Among the irreducible representations obtained by
the above equations, one T2 belongs to the translation,
one T1 to the rotation, and all the others belong to the
vibration modes. The number of IR, Raman, and po-
larized Raman active modes are respectively

�9h2=2� � �h=2� ÿ 1 for IR and Raman active �T2�
3h2 for depolarized Raman active �E�
�3h2=2� � �h=2� for polarized Raman active �A1�

3.2 Vibration spectra of Cn�Td ; n � 4h2; h � 1; 2; . . .�

For this type of fullerene, as there are carbon atoms on
both boundaries P03P3 and P03P

000
3 in the patches shown in

Fig. 2, we can only take the carbon atoms on one
boundary to be in the patch. Since the three planes

Table 1. Characters for the point groups T and Td , where
e � exp�i2p=3�
T Ê 4Ĉ3 4Ĉ2

3 3Ĉ2 Basis functions

A 1 1 1 1 x2 � y2 � z2

E 1 e� e 1 �2z2 ÿ x2 ÿ y2;
1 e e� 1 x2 ÿ y2�

T 3 0 )1 1 �x; y; z�
�Rx;Ry ;Rz�
�xy; yz; xz�

Td Ê 8Ĉ3 3Ĉ2 6r̂d 6Ŝ4 Basis functions

A1 1 1 1 1 1 x2 � y2 � z2

A2 1 1 1 )1 )1
E 2 )1 2 0 0 �2z2 ÿ x2 ÿ y2; x2 ÿ y2�
T1 3 0 )1 )1 1 �Rx; Ry ; Rz�
T2 3 0 )1 1 )1 �x; y; z� �xy; yz; xz�
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determined respectively by OP03 and OP3, OP03 and OP2,
and OP03 and OP0003 are equivalent with respect to the
threefold axis, according to distribution functions (9),
(10), and (11), there are 3m; 3m� 1, and 3m� 2 carbon
atoms respectively on the symmetry planes rd in the
patch for the three cases h � 3m, h � 3m� 1, and
h � 3m� 2. By using Eq. (15) and taking v�Ĉ3� � 0 into
consideration, we obtain the formula for the decompo-
sition of nuclear motions into the irreducible represen-
tations in Cn�T d ; n � 4h2� as follows:
na � 1

2 h2v�a��ê� � 1
2 hv�a��r̂d� �17�

where a � A1, A2, E, T1, and T2, respectively.
Among the irreducible representations obtained by

the above equations, one T2 belongs to the translation,
one T1 to rotation, and all the others belong to the vi-
bration modes. Thus we obtain the number of IR and
Raman active modes of Cn�Td ; n � 4h2� to be respec-
tively

�3h2=2� � �h=2� ÿ 1 for IR and Raman active �T2�
h2 for depolarized Raman active �E�
�h2=2� � �h=2� for polarized Raman active �A1�

3.3 Vibration spectra of Cn�T; n �
4�h2 � hk+k2�; h > k; h, k � 1; 2; . . .�

As the T group has no symmetry planes, it has 12
elements, four classes, and four non-equivalent irreduc-
ible representations denoted by A, E (a pair of conjugate
representations), and T as shown in Table 1.

According to Eqs. (12), (13), and (14), the tetrahedral
fullerenes should be divided into three cases to discuss
the vibration spectra. The presence of four carbon atoms
on the threefold axes in the latter two cases could in-
troduce di�erent properties from those of the ®rst case,
but it does not a�ect the decomposition formula of nu-
clear motions owing to the fact v�Ĉ3� � 0.

The three cases of tetrahedral fullerenes with T sym-
metry have the same form of decomposition formula:

na � h2 � hk � k2
ÿ �

v�a��ê� �18�
where a is A, E, and T , respectively.

Among the irreducible representations obtained by
the above equations, one T belongs to the translation,
one T to the rotation, and all the others belong to the
vibration modes. The number of IR and Raman active
modes are respectively

3�h2 � hk � k2� ÿ 2 for IR and Raman active �T �
�h2 � hk � k2� for depolarized Raman active �E�
�h2 � hk � k2� for polarized Raman active �A�

As examples, the number of IR, Raman, and polar-
ized Raman active modes for some tetrahedral �Td and
T � fullerenes are listed in Tables 2 and 3, respectively.

4 NMR spectra of tetrahedral fullerenes

In natural abundance, only one in every 100 carbon
nuclei is a 13C nucleus, and in ideal circumstances the
13C NMR spectrum of a tetrahedral fullerene will be
very simple. It will consist of a number of peaks, one for
each equivalent set of atomic sites, with intensities
proportional to the number of sites in each set. A
symmetry analysis by means of the patch and its
distribution function can therefore predict the number
of peaks and their relative intensities in the hypothetical
13C NMR spectrum of a tetrahedral fullerene. Here
symmetry places a very useful limitation on the 13C
NMR spectrum. There are only three kinds of equivalent
sets of atomic sites in a fullerene. Therefore, the idealized
stick spectrum of a fullerene may contain three di�erent
peak heights at most.

4.1 NMR spectra of Cn�Td ; n � 12h2�

Inside the patch shown in Fig. 1 there are h2 carbon
atoms, which are symmetrically distributed about the
symmetry plane rd in the manner according to the
distribution function (8).

Obviously, there are h carbon atoms on the symmetry
plane rd and h�hÿ 1� carbon atoms located symmetri-
cally on the two sides of the plane in the patch. In to-
tality, there are h di�erent sets with 12 carbon atoms in
each set lying on the symmetry planes, and h�hÿ 1�=2
di�erent sets with 24 carbon atoms in each set not lying

Table 2. Infrared (IR) and
Raman active modes of Cn�Td� Fullerenes n = 12h2 n = 4h2

C12 C48 C108 . . . C36 C64 C100 . . .

IR and Raman active �T2� 4 18 41 14 25 39
Depolarized Raman active �E� 3 12 27 9 16 25
Polarized Raman active (A1) 2 7 15 6 10 15

Table 3. IR and Raman active
modes of Cn�T ; n � 4�h2�
hk � k2��

Fullerenes C28 C52 C84

(h = 2, k = 1) (h = 3, k = 1) (h = 4, k = 1)

IR and Raman active (T) 19 37 61
Depolarized Raman active (E) 7 13 21
Polarized Raman active (A) 7 13 21
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on any symmetry element of the Td group. Therefore, the
total number of NMR spectrum lines, NNMR, for the
tetrahedral fullerenes Cn�Td ; n � 12h2� is
NNMR � h� h�hÿ 1�=2

4.2 NMR spectra of Cn�Td ; n � 4h2�

According to patch of Cn�Td ; n � 4h2� shown in Fig. 3
and its distribution functions (9), (10), and (11), we need
to consider the three cases separately.

4.2.1 h � 3m, m � 1; 2; . . .

In the patch shown in Fig. 3a the plane de®ned by OP03
and OP3 is also a symmetry plane since it is equivalent to
the plane r0d with respect to the threefold axis OP03.
According to distribution function (9), therefore, there
are 3m carbon atoms lying on the symmetry planes, and
3m�mÿ 1� carbon atoms located symmetrically on the
two sides of the symmetry plane r0d . In totality, of the 12
equivalent patches, there are 3m di�erent sets with 12
carbon atoms in each set lying on the symmetry planes,
and 3m�mÿ 1�=2 di�erent sets with 24 carbon atoms in
each set not lying on any symmetry element of the Td
group. Therefore, for the fullerenes Cn�Td ; n � 4h2;
h � 3m� the number of NMR spectrum lines, NNMR, is
determined by

NNMR � 3m� 3m�mÿ 1�=2

4.2.2 h � 3m� 1; m � 0; 1; 2; . . .

In this case there are �3m� 1�2=3 carbon atoms in the
patch shown in Fig. 3b, and they are symmetrically
located about the plane r0d in the manner according to
the distribution function (10). Therefore, 1/3 carbon
atom located on the threefold axis OP03, 3m carbon
atoms lying on the symmetry planes and m�3mÿ 1�
carbon atoms located symmetrically on the two sides of
the plane r0d in the patch. Taking the 12 equivalent
patches as a whole, we have one set of four carbon
atoms on the threefold axes, 3m di�erent sets with 12
carbon atoms in each set lying on the symmetry planes,
and m�3mÿ 1�=2 di�erent sets with 24 carbon atoms not
lying on any symmetry element of the Td group.
Therefore, for the fullerenes Cn�Td ; n � 4h2;
h � 3m� 1� the number of NMR spectrum lines,
NNMR, is

NNMR � 3m� m�3mÿ 1�=2� 1

4.2.3 h � 3m� 2; m � 0; 1; 2; . . .

In this case the �3m� 2�2=3 carbon atoms in the patch as
shown in Fig. 3c are symmetrically located about the
plane r0d in the manner according to the distribution
function (11).

In the patch, there is 1/3 carbon atom located on the
threefold axis OP03, �3m� 1� carbon atoms lying on the
symmetry planes, and m�3m� 1� carbon atoms located
symmetrically on the two sides of the plane r0d . Taking

the 12 equivalent patches as a whole, we have one set of
four carbon atoms located on the threefold axes,
�3m� 1� di�erent sets with 12 carbon atoms in each set
lying on the symmetry planes, and m�3m� 1�=2 di�erent
sets with 24 carbon atoms in each set not lying on any
symmetry element of the Td group. Therefore, for the
fullerenes Cn�Td ; n � 4h2; h � 3m� 2� the number of
NMR spectrum lines, NNMR, is

NNMR � �3m� 1� � m�3m� 1�=2� 1

4.3 NMR spectra of Cn�T; n � 4�h2 � hk� k2�; h > k�

The fullerenes with T symmetry have been divided into
three cases, according to Eqs. (12), (13), and (14).

For case 1, there are k2 � 3mk � 3m2 di�erent sets
with 12 carbon atoms in each set, so the number of
NMR spectrum lines, NNMR, is

NNMR � k2 � 3mk � 3m2

For case 2 there are k2 � �3m� 1�k � 3m2 � 2m dif-
ferent sets with 12 carbon atoms in each set. Further-
more, there is one set of four carbon atoms lying on the
threefold axes. Therefore, the number of NMR spectrum
lines, NNMR, is

NNMR � k2 � �3m� 1�k � 3m2 � 2m
� �� 1

For case 3, similar to case 2, the number of NMR
spectrum lines, NNMR, is

NNMR � k2 � �3m� 2�k � 3m2 � 4m� 1
� �� 1

in which the last number 1 is due to the presence of four
carbon atoms located on the threefold axes.
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